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A PROCEDURE FOR CALCULATIKG THE BOUNDARY-LAYFR
CSVALCPUMENT IN THE REGION OF TRANSITICN

FROM LAMINAR TO TURBULENT FLOW

Prepared by:

Jerome Persh

ABSTRACT: A method for calculating the developwent of the
boundary layer in the region of transition from laminar to
turbulent flow i3 given, This method is based on empiricszl
correlations of a large amount of experimentsl velocity pro-
file data ip the trarcsition region for incompressible and
compressibie flows with and without pressur: gradients, The
valocity profile correlations and an assumsd skin-friction
law are used in conjunction with the bcuncdary-layer momentum
equation to predict the development of the boundary-luyer
parameters, Vithin the framework of tho assumpiions the
metuod 18 valid for imccapressible and coxpressible flows
with and withocut pressure gradients and hsat transfer,
Jeverdl examples are given which illustrate ths boundary-
layer profile Rhistory in the trausition rogion of gemersal
hody shapss.
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This renor: ~ontain. the results of an acelytical investi-
g°ti:9 of <y bouada: : layer in the region of trnansition
fiom fnamis o $0 turk eut flow. This work was undertaken

. .a4 % calculation scheme to bridge the gap between
laminar 2 «* turbulent fiow., Since the procedure outlined
herein ie¢ ;wincipally intended ior arbkitrary vody shapes,
its usef:. ‘ness will be most apparent for missile applica-
tions. ‘" e results obtained are of practical imporiance

L e oziign of current and forthcoxing high-speed miszsiies.

This work was carried out under Task Number 502-825/51014/01.
The author is indebted tc Dr., R, ¥, Laobb for his continued
interest during the course of the investigation, Mr, I.
Korobkin for significant suggestions and comments, and to

Mr. Richard Buck wic carried out the extensive calculations
associated with the NOL Pressurized Range Data.
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SYMBOLS
local skin-friction wtﬂcunt based on free-
stream propertien, 27,/pgus2

local skin-friction coefficient based on wall
properties, 20y/pyue?

specific heat at conatant pressurs
local heat-transfer coefficient *
boundary-layer shape paraseter, 6*/6

boundary-layer shape parasster for incompreasibhle
flow &6*%inc/Binc

thermal conductivity

Nusselt number, hx/k

exponent in power law velocity profile represeantation
pressure

stagnation pressure

Prandtl number

rate of heat transfer per unit area

radius of axisymmetric body

Reynolds numbur based on momentum thickness, pgugel/je

Reynolds number based on distapce and wall propsrties,
Pwle®/ iy

distance along surface froam stagnation point
tenperature

strugnation “emperature

moan velocity componsnt in s-direction

total boundary-layer thicknead

displacement thickness for incr_.ress!'’le fiouw
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0
u
o
o = displacemsni thickness for compressible tiow
[.)
u
* - 1- =B
6 (- Sewe? 97
0
Ginc = momentum thickness for incompressible flov
]
u ul
] - = (1 - =) d
inc U ( u.) y
)
] = momentum thicknems for compressible flow
0
o PeVe g
- = angle between normal to surface of a given body and
flow direction
e = raiio of specific heats
p = density
M = viscosity
w2 = exponent in viscosity temperatures relationship
Subscripts:
ad = gquilibrium wall temperature for zerc hsat transfer
° = values bamad on local free-streoam conditions outside
boundary layer
ine¢ = incompressible flow

Lam = laminar flow
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1% = BAZimuN vialue
™ = transition region

Turb = turbuleut flow

 J w vyalues baced on wall conditiocans
[ ] = yalues bas’d on conditions ahead of normal sheck
Tave
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A PROCEDURE FOR CALCUIATING THE DOUNDARY-LAYER
DEVELOPMENT IN THR RRGIOX OF TRANSITION
FROM LAMINAR TO TURBULENT FLOW

INTROOUCTION

1, Probably the weakest link iu the calculations of wall
tuwperatur:s and heat transfer to arbitrary body shapes is

*lie location of the transition "point"”., Numerous theoretical

1 restigations (for example references a, b, and ¢) of laminar
boundary-layer stability and experimental investigations (refer-
ences d, e, and I as exaaples) have been conducted im an effort
to predict the location of transition for arbitrary bodies and
free-stream conditions, Despite these extensive investigations,
& quantitative means for determining the tramaition location

is s8tiil not available, Although it is sl.own in the thorough
investigation of experimental transition data conducted by
Probstein and Lin (reference g) that the qualitative trends
predicted by stability calculations are more or less verified

by experiments, little can be concluded as far as quantitative
information is concerned,

2, Another serious deficiency in the current calculation
schemes is the neglect of the iramsition region. The usual
procedure is to terminate the laminar boundary-layer calcu-
lations at an assumed Lransition point and from this point

on downstream, it is sssuwed that fully turbulent flow exiats,
While this procedure yields a conservative rosult from a heat
transfer standpoint, 1% i= conceivable that configurations
that are actually acceptable may bs rejected because of exces-
sive conservatism due to this techmique, Since the behavior
of the boundary layer on a given body shaps depends on a Cou-
plicated combination of such parameters as the geometry, pres-
sure gradient, heat transfer, etc,, casss may arise where the
surface is alpost entirely covered by transition region flow,
On the other hand, it is reasonable to suppose that body shapes
may be devized that encourage the existence of transition re-
gion flow, Consequently, since the heat transfer due to a
transitional boundary layer can be substantially less than
that for a fully turbuleant boundary layer, this procedure may
provide a meansn for slleviating serious heat transfer situa-
tions,

3. Tae present investigation was therefore inaugurated to
determine whether or not a method for calculating the boundary-
layer development in the transition region could be devised
with the experimental and analytical information at hand, It
was found that, when the boundary-layer momentum equution is
used in conjunction with empirical correlations of a large

Py
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s 8. Over a given surfsce the needed values of the stream
.- properties ug and pe jumt outside the boundary layer are ob-
- tained from either expurimental pressure distribution data

or from nu oaloculation scheme which im given in Appendix A,

7. AS 38 usually dene, the tnitia) luminar flow i» oAlou-
lated uming a&n appropriate analytioal wethod (Appendix A) “t

to the point where i¢ iv assumed that transition starts, A

this point on the aurface, the valuss of the boundary-layer
frop.rtitl such am the skin-friction coefficient (o), boundary-
syer shapse garamatar (6% /8);, and the momant'wn thickness (@g)
are known, him im suffiocient information to start the transi-

tion region calculations, The following sections dimcuss the
procadures to be umsed for oalouwlating the needed akin-fricticn
coefficients and the needed valuesx of 3%/8 in the transition
region,
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suiv-¥r ction Confficimnts

8, B 4= w2 0 0 Sace (J) from s lrrge collention of
S L ¢ e wotivessible flow that the skin-friction
S Tt snw wERDALLION region variss with Rejonolda

wushg? Redording to A lpw of the form:

constant
""ft! - °t‘t'urb - '—.".";'2"'— (2)

In the absence of experimentsl data to confirm or reject this
form of the trammition region skin-frictioa law for compressible
flows, it will be assumed that the form of Equation (2) is ap-
piioable for all caves which are considerad heorein., It is
interesting to point out hery, that vhen Rig becomes very large

Oy, W Otpyry @)

And the results obtained will therefore fair smoothly into
the turbulent zonc of a given body shape.

9. The value of the comstant in Equation (2) is p~incipally

a fumnction of the assumsd value of Reg at the star. f transi-
tion, however, it doss depend somewhat on the oiroumstances of
the purticular caloulation, This constant is determined in the
follovwing manper. At thw assumed point where transition starts

®fram = “or b

For the calculated laminar value of sy, a value of og is
deternined wning either the equatiocas and procedure ded¥fPbed
in refarence (k) or another theory which adequately predicts
turbuleat boundary-layer tkin-friction coefficients, This
information is sufficient to determine the value oY the con-
stant for a given caliculation, It should be pointea out here
that since the valuss of of;,, and ciTurh Ars somewhat dependont
on heat transfer and pressure gradient, the value of the con-
stant will depend on these gquantities. The inflr:unce of thése
effects im, ia general, fairly small, and as menticmad before
the value of the constant depends mninly on the value of Rep

at the start of trarsition. An illustration of several typical
transition region skin-friction curves is given in Pigure 1,
which shows ihe variation of ¢f with Rea for incompressibls

flat plate flow, PFor this particular case, Figure 2 shows

the variation of the constant in Equation (2) with assumed value
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of Reg at the siart of transition,

Boundary-Layer Shaps Paramseter

10, 1t can be meen from Rquation (1) that in addition to
values of cf,., it is hecessary to have a means for determin-~
ing the vnlueg 0f the boundary-layer shape parameter in the
transition region, It wam shown in reference (h) that tran-~
sitior region bolndary-layer velocity profiles from a single
parameter family of curvea when correlated with the incompres-
sible definition of 6#/0 (Hync).

11, Using these experimental data, ths berhavior of (8%/8)y, .
theough the transition region was plotted as a function of
4 Reg where

aReg = (Regjy - (Roe)ntart o4 transition (B)

The data are ‘leotted in Figure 3 on a logarithmic scale and

n faired curve is shown in Figure 4 on 4 Cartesian coordinate
scalo, In view of the inaccuracies inherent in the determina-~
tion of (6%/6)inc, the correlstion shown in Figure 3 is re-
markable, These renults indicate that over a wide range of
fiow conditions, the transition region covers a length of body
svrface corresponding to an increase in Reg of about 1000,

The fairly largoe scatter in the values of (0%/8)ypc At the

end of *“ansition im due to the fact that (4*/0)inc for turbu-
lent flow is a function of Hey itself, and aince thess data
represent a wide variety oi valuea vl Reg at the start of
transltion It is to be expected that (6%/8)inc at the end of
transition will vary somewhat, It should be pointed out that
the calculation scheme given herein accounts for the Reynolds
number influence on (4*/é)inc at the start of turbulent flow,
This im because the methrd for determining turbulent boundary
skin-friction noefficients given in reference (k) takes into
account the variation of (8¢/6)4ps on the values of Cfqu.p-

Calculation Procedure

12. The procedurs for omlculating the boundary-layer develop-
ment in the transition region for incomprossible isothermal

flow is etraightforward. At an assumed %ransition point, the
values of 0, Cfyam, and (0*/8) are available from the lamipar
houndary-layer calculations, *ET- information together with

the velocity distribution and kuown geometry is inserted into
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Bquation (1) and a value of & may be calculatad at some

suall arbitrary increment ol distance s, From the known
conditions outside the boundary layer, the value of Reg

at this now position can then be calculated and the value

of A Repg determined, This value of A Reg i1s used with either
Figure g or 4 to determine the value of (6%*/8)ypc. Kuovledge
of Reg at this new point also yields cf,,. from Equation (2),
The procedure is then repeated in & sStepwise manner along

the body surface until the end of the body is reached. As
montioned before, the transitiou region results obtained

fair smoothly into the turbulent zone and therefore, this
procedure is applicable for ithe entire body surface dowastream
of the laminar flow region.

13, ¥or compressible flows with and without heat transfer
the procedure must be modifjed somewhat because Equation (1)
rvequires the use of (6%/6) rather than (0%/6)ine. To de-
terniine values of (6%/0). the velocity profile correlation
curve given in reference (h) is used in conjunction with
Pippure 3 or 4. Yor conveniencd¢ the velocity profils correla-
tivn curve is given herein as faired curves for clarity pur~
peses (Figure 8)., The readcr is referred to Figure 13 of
roference (hj which shows the experimental data from which
this set of faired curves wvas prepared.

14, Values of (6*/6)c for use in Equation (1) are obtained
in the following manner, Using the curves shown in either
igure 3 or 4 the value of (4%/8)inc I8 determined at each
tiuccessive point. This value of (A%/6) e i8 usad with Fig-
uwre 5 to determine the variation of u/ug with y/845.. Since
the value of (8*/6)c is defined as

y/@inc
T.\l z
P o Qa - T e ) d (Oinc)
—] = (6)
(o )° ¥/04inc
LU S T
o T ug Q-5 ¢ yne!

this Aintegration may only be carriad out if the temperature
distribution across the boundary layer is kxnowp, The follow-
ing siwple expression for the temperature distribution is
ugqd (vreferonce k):
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T T TwTad fu "'-d'Tﬂ(a_)’ (7)
Te Te Te ( “e) To v

Yalues of Tag are obtained from

Tad Y-1
Fo,omi4rg U2 (8)

where a mean value nf the recovery factor (r) (say r = 0,87),
is sufficiently accurate for the present calculations,

15, With the exception of the determination of the valuss of
(6*/8) for the compressible flow case, the procedure for calcu-
lating the boundary-layer behavior in the transition region im
the same for both incompressible fnd compressible flows with
and without heat tranafer,

16, At this point, it is important to point out the basic
assumptions inherent in the procedure described and also how
these may affeot the validity of the results obtained, Since
the syatom of equations umed for calculating the valuns of
Cfey ANd Cfp,pp, Were obtained for the zero pressure gradient
case, it is tmplied that the influance of pressure gradieat

on ¢f is negligible, This is a necessary assumption because
experimental information and dependable analytical relations
which describe the influence of pressurc gradieant on the skin
friction in the transition region are not yet available. A
other consideration is the use of the empirioal correlations
of the experimental data of reforence (h), Figure 8, Although
these data represent both incompressible and compresmible flows
with and without pressure gradients, none of the data examined
were obtained under heat-transfer conditiona, Despite this
fact, it is felt that these correlations can be used for heat-
transfer cases because the velocity profile is little affected
by heat transfer either to or from the surface (reference k),
The influence of heat transfer is taken into aacount, however,
in the determination of (0*/8)g through the tempers.ture pro-
file across the boundary layer,

RRSULTS AND DISCUSSION

Zero Pressure Gradinnt Results

17. The analysis described has been applied to the incom-
pressible flat plate data of reference (1) and also to the
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comprassihlae flow data of reference (m). The results of
these calculations are shown in Figures 6 to 9, PFPigures 6
and 8 show comparisons between the predicted and e¢xperi-
montal values of (6*/0)ine for each of these cases. Calcu-
lations ¢f tha lamina: boundary layer regioa of these sur-
facos were not carried out. As ‘would be expected the agree-
ment ix tweon the predicted and experimental vaiuves of Reg and
(0%/8)inc are good for buth cases. Although this is more or
less an anticipated result since the empirical correlations
were obtained by using these experimental data, it should be
pointed out that the walidity of the assumed skin-friction
law in the transition region is verified because this was
not obtained from these data,

Protsure Gradient Results

18, 8ince it is anticiputed that the method for calculating
the boundary-layer behavior in the transition region presented
herein will have itms greatest usage for bodies of revolution
with favorable pressure gradient and heat tranafer, these
illustrations given in this mection will deal principally with
this combination of circuwstances. It should be realized that
this is the general case, however, and deviations from this

set of conditions such as two-dimonsional flow or flows with-
out hent transfer are special cases, and the procedure describe
is sufficiently goeneral to encompass many conceivable condition
Where modifications to the procedure are needed tyL cover any
specin)l set of conditionn as mentioned above, these will be
mentioned and the necessary changes indicated,

18. in the absence of detailed experimental data whick can
bo uoad for comparison purposes, illustrations can only be
given for several cxamples which do not repyvesent true veri-
fications of the procedure.

30. As pointed out in reaference (f), transition observations
in the NOL Pressurized Range are made by inspecting shadow-
graph photographs. The transition "point” is identified by
tho firat appearance of turbulence near the body surface.

As pointed out in reference (f) this point is assumed to be
the end of tranaition or the stert of fully turbulent flow,
Since the point on the body where transition starts is pre-~
sently of great importance, a modification of the procedure
outlined herein has been used to calculate the point on the
body surface where transition starts. This procedure consists
of ansuming a point on a given body upstream of the obsmerved
turbulence, and initiating thes transition ruagion calculations
at this point. The calculations are carried out until the
value of & Reg = (000, If this point on the body at whichk
thie occurs correspondas to the obsurved turbulence point, the
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asswicd position where the transition region calculations

are ntarted is correct, If not, the calculations are then
repegied until agreement between the calculated end of
transition and that observed in the photographs is reached,
This procedure is illurrrated in Figure 10. In this figure
the variation of Reg with distance along the rurface is shown
for une of the Pressurized Range '"shots' reported in reference
{f). Figures 11 and 12 show the results obtained fro two
additioaal firings made in the NOL Pressurized Range.

Transition Resultns

21, As pointed out previousiy the results resported in refer-
ence (f) sre for the end of transition, It is of interest to
examine the correslation of transition data presented in this
rofersnce on the basis of values of Reg at the start of tran-~
sition, Thims is shown in Figure 13, where the variation of
Rep at the start of transition is plotted a8 & function of
the incompressible pressure gradient parauctes 4 /09 dug/ds.
It is apparent that the trends indicated by the values of Rep
at the end of transition are different than those for the
start of transition and the values of Reg at the start of
transition are a good deal lower than those reported for the
ond of trausition,

CONCLUDING REMARKS

22, A method for calculating the develupment of the boundary
layer in the region of transition from laminar to turbulent
flow has been pressnted, This method is based on empirical
correlation of a large amocunt of velocity profile data in the
tran=i%isn reg.on for incompressible and compresaible flows
with and without pressurs gradients, The velocity profile
correlpticus are used in conjunction with the boundary-~layer
momentum equation to [wedict the development of the boundary-
layer parameters, A number of examples are presented which
illustrate the results obtained using the present method and
also test its validity for the cases for which experimental
data are available, In addition, a method is suggested for
calculating the position of the start of transition on a given
bndy surface when the end of transition is experimentally
identified by photographic techniques, Several calculations
illustrating this procedure are presented,

23, The proposed method can only be regarded ag approximate

at the preusent time because of the paucity of detailed experi-
mental data for verification purposes, It does, however, pro-
vide a basis for calculations and an inaight as to the experi-
mental data which are required for modifications and refinements,

USRS
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APPRIDIX A

Caicuistion of Pressure Distribution and
Laminnar Bouncary-lLayer Region

1. For the examples presented herein, the pressure distri-
bution about a given body shape was obtiined from either
experimental data or calculated data using the modified
Mewtonian flow concept (reference n). This concept neglects
the presence of the shock wave in {ront of a given blunt
body, and the pressure on the surface is cziculated from

°p Po-Pm
Cp max PFo'-Pw

- cos? (Al)

up to a point along the contour where the slope of the pres-
sure versut distance along the surface curve is the same as
that obtained from a two-dimensional Prandtl-Meyer expansion
about the surface.

dpe

dpe

ds (A2)

Newtonian Prandtl-Meyer

2. This point along the surface may be predetermined by
solvinrg the following equation;

v-1
v
r Fo 082 & Ir P\ ~ 29-.'
(*"") 08SH + — 'il!_.l‘:—.lcos‘-u_.l ‘
sin 2« = !-1 L‘-‘ %o | JL___ o/ o, :
P - -1/ 1 "=
(1 - E) [ rz [(1 - E’p,) cosZe. + -—9"] L -1]7 :
-1 Po Po'

(A3)

From the point along the surface where Equ.tion (A3) is satisfied
on dowistZeam to the =nd of the body, the pressures are determined
using the uforementioned Prandtl-Meyer flow relations. Knowing
the pressure distribution around the body, the local flow con-
ditions at any point can be calculated using an isentropic ex-
pansion from the stagnation point,

11
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3. For the laminar flow regicn on the examples presented
herein, the compressible laminar boundary-layer analysis for
axisymmetyric flow given in referonce (o), was used, The
relevant oquatior for oalculating Reg (und hemce 9) is:

-X s/L K

1=B
n Te M, Te R? . (A4)
N [“".I 7 [—] d ¢
32 LTo J R o To I.I'B L

which has beson rearranged for the present analymis to the
following form:

"'.
n..’-‘.A;f -;- / 1 ds (AB)

K D=1
T
1 .[i] Mg nd (A8)

whare

and A = constant = (), 44

W
iy~

The value of B is dependent on the wall feaperaturs and is
determined from PFigwre 4 of refersnce (o), dsince wll of thy
flow properties outside the boundary layer are known from
previous caloulations, the determination of the value of Re
at the start of transii.on means that the value of 8 at thi
point can be deduced, To determine the value of cg at this
point, the following procedure is required, The value of n
is determ’ned using

n-—[ﬂ’-'] - [T°']nn‘an- r (AT)
Po R Me? |7,

where

12
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TS ke

P~ 0.44 % T da
[+ ]

and the valuew of sy calculated 2rom

T
-...! -1
Sw To'

4, Yhen hoth n and sy are calculated Figures ) and 2 «
reference (v), may be used to obtain quantities L and

Ly ey,

Niy [ppe)

Oty \/;;' - af j.;

. the value of oty and thershy ng. osan be calculated by w

Since

12 the heat transfer im desired, this can be obtainad 1§
following manner; calculaie tiw ealue Oof Ruw uslng

Of' J-..—'

Yu,
oftw Rey - J'=:.

| {15

Pra}

which iu turn yields the heat-transfer coefficient, h,
l thereby q can be calculated from
aT

ol [Faa-7e]

l g,

12




NAVORD Report 4438

“

,_
r}

Fe=0.44 T da (A8)

1
o

and the valus of sy calculated from

T
- ¥ - 1
By To'

4, When both 2 and sy are calculated Figures ) and 1 of
refersnce (v), may be used to obtain quantitivs £ and

Ly 30'

My |pra1

Ofy fl—., - zlf;- (A9)

" the value of cfy and thereby og. oan he calculated by uvsing

Since

r.
oty = Ofy T (A10)
-

12 the heat transfer is dewired, this can bé obtainad in the
following manner; caiculaty ctive rmlue of Kuy using

o:.]'n Wu,
0ty Roy - F‘ (Al}))
LIS
Prel

which iu turn yields the heat-transfer coefficient, h, and
l thereby q oan be caloulated from

T
Q= ke &
| :

- & [raa-mv] (A12)
Yy
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The 118t needed quantity {(8%/0)¢ can bo obtainecd

ae To' To'
® Jo = Hime o R (A13)

whera Hype 48 given us Figure 6 of reference (o) as a funo~
tion of n and sy,

8. The parameters necesnary to start the transition region
caloculnticns are therefore obtainable using this procedure
for calculating the laminar houndary-layer behavior,

14
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